Copper(II) coordination outside the tandem repeat region of an unstructured domain of chicken prion protein.

نویسندگان

  • Ewa Gralka
  • Daniela Valensin
  • Karolina Gajda
  • Dimitri Bacco
  • Lukasz Szyrwiel
  • Maurizio Remelli
  • Gianni Valensin
  • Wojciech Kamasz
  • Wioletta Baranska-Rybak
  • Henryk Kozłowski
چکیده

Combined potentiometric, calorimetric and spectroscopic methods were used to investigate the Cu(2+) binding ability and coordination behaviour of some peptide fragments related to the neurotoxic region of chicken Prion Protein. The systems studied were the following protein fragments: chPrP(106-114), chPrP(119-126), chPrP(108-127), chPrP(105-127) and chPrP(105-133).The complex formation always starts around pH 4 with the coordination of an imidazole nitrogen, followed by the deprotonation and binding of amide nitrogens from the peptidic backbone. At neutral pH, the {N(im), 3N(-)} binding mode is the preferred one. The amide nitrogens participating in the binding to the Cu(2+) ion derive from residues from the N-terminus side, with the formation of a six-membered chelate ring with the imidazolic side chain.Comparison of thermodynamic data for the two histydyl binding domains (around His-110 and His-124), clearly indicates that the closest to the hexarepeat domain (His-110) has the highest ability to bind Cu(2+) ions, although both of them have the same coordination mode. Conversely, in the case of the human neurotoxic peptide region, between the two binding sites, located at His-96 and His-111, the farthest from the tandem repeat region is the strongest one. Finally, thermodynamic data show that chicken peptide is a distinctly better ligand for coordination of copper ions with respect to the human fragment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chicken prion tandem repeats form a stable, protease-resistant domain.

Prion-linked diseases, such as mad cow disease, scrapie, and the human genetic disorder Creutzfeldt-Jakob disease, are fatal neurodegenerative diseases correlated with changes in the secondary structure of neural prion protein. We expressed recombinant chicken prion protein in Escherichia coli and purified the protein to homogeneity. Circular dichroism spectra of the 26 kDa recombinant protein ...

متن کامل

Preferential Cu Coordination by His and His Induces -Sheet Formation in the Unstructured Amyloidogenic Region of the Prion Protein*□S

The prion protein (PrP) is a Cu binding cell surface glycoprotein that can misfold into a -sheet-rich conformation to cause prion diseases. The majority of copper binding studies have concentrated on the octarepeat region of PrP. However, using a range of spectroscopic techniques, we show that copper binds preferentially to an unstructured region of PrP between residues 90 and 115, outside of t...

متن کامل

The octarepeat domain of the prion protein binds Cu(II) with three distinct coordination modes at pH 7.4.

The prion protein (PrP) binds Cu2+ in its N-terminal octarepeat domain. This unusual domain is comprised of four or more tandem repeats of the fundamental sequence PHGGGWGQ. Previous work from our laboratories demonstrates that at full copper occupancy, each HGGGW segment binds a single Cu2+. However, several recent studies suggest that low copper occupancy favors different coordination modes, ...

متن کامل

Multiple forms of copper (II) co-ordination occur throughout the disordered N-terminal region of the prion protein at pH 7.4.

Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby bac...

متن کامل

Prion proteins leading to neurodegeneration.

Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2009